Nature Environment and Pollution Technology (Dec 2024)

Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil

  • S. Dash and M. Kujur

DOI
https://doi.org/10.46488/NEPT.2024.v23i04.035
Journal volume & issue
Vol. 23, no. 4
pp. 2315 – 2323

Abstract

Read online

The research was carried out to determine the potential effect of microbiota, organic carbon, percentage of moisture content, and microbial biomass concentration as an evaluator of variation in basal soil respiration rate. Relative distribution and composition of the microbial population were estimated from six different chronosequence manganese mine spoil (MBO0, MBO2, MBO4, MBO6, MBO8, MBO10) and forest soil (FS). The variation was seen in moisture content (6.494±0.210-11.535±0.072)%, organic carbon (0.126±0.001- 3.469± 0.099)%, MB-C (5.519±1.371- 646.969± 11.428) μg.g-1 of soil. A positive correlation was shown between OC with MB-C (r = 0.938; p< 0.01) and moisture content (MC) (r = 0.962; p< 0.01). Variation in the basal soil respiration (BSR) and microbial metabolic quotients (MMQ) was shown to range between 0.352 ± 0.007- 0.958 ±0.014μg CO2-C.g-1 and 6.5× 10-3 - 1.481×10-3 μg CO2-C.g-1 microbial-C.h-1 with BSR: OC from (2.793-0.276)% respectively. This result shows that there is a gradual increase in OC, MC, MB-C, and BSR across seven different sites due to progressive enhancement in soil fertility that leads to the initialization of succession. Stepwise multiple regression analysis further confirms the degree of variability added by microbial biomass C, moisture content, organic carbon, and microbial population on basal soil respiration in microbes. Principal component analysis enables the differentiation of seven different soil profiles into independent clusters based on cumulative variance given by physico-chemical and microbial attributes that indicate the level of degradation of land and act as an index to restore soil fertility.

Keywords