Applied Sciences (May 2022)
Investigating the Performance of FixMatch for COVID-19 Detection in Chest X-rays
Abstract
The advent of the COVID-19 pandemic has resulted in medical resources being stretched to their limits. Chest X-rays are one method of diagnosing COVID-19; they are used due to their high efficacy. However, detecting COVID-19 manually by using these images is time-consuming and expensive. While neural networks can be trained to detect COVID-19, doing so requires large amounts of labeled data, which are expensive to collect and code. One approach is to use semi-supervised neural networks to detect COVID-19 based on a very small number of labeled images. This paper explores how well such an approach could work. The FixMatch algorithm, which is a state-of-the-art semi-supervised classification algorithm, was trained on chest X-rays to detect COVID-19, Viral Pneumonia, Bacterial Pneumonia and Lung Opacity. The model was trained with decreasing levels of labeled data and compared with the best supervised CNN models, using transfer learning. FixMatch was able to achieve a COVID F1-score of 0.94 with only 80 labeled samples per class and an overall macro-average F1-score of 0.68 with only 20 labeled samples per class. Furthermore, an exploratory analysis was conducted to determine the performance of FixMatch to detect COVID-19 when trained with imbalanced data. The results show a predictable drop in performance as compared to training with uniform data; however, a statistical analysis suggests that FixMatch may be somewhat robust to data imbalance, as in many cases, and the same types of mistakes are made when the amount of labeled data is decreased.
Keywords