Water (Feb 2024)

Spatial Distribution and Relationship between Slope Micro-Topography Changes and Soil Aggregate Stability under Rainfall Conditions

  • Shangxuan Zhang,
  • Long Li,
  • Zhizhuo Zhu,
  • Peng Zhang

DOI
https://doi.org/10.3390/w16050648
Journal volume & issue
Vol. 16, no. 5
p. 648

Abstract

Read online

Natural rainfall affects the stability of soil aggregates by the kinetic energy of the rain changing the morphological characteristics of slope micro-topographic factors. Although the relationship between the stability of soil aggregates and micro-topography is not very significant at the slope scale, there are also rules to be found. This study aims to explore the relationship between slope micro-topography and aggregate stability, and to observe the spatial distribution of aggregate stability after water erosion. In this study, a digital elevation model of slope micro-topography was established by using a three-dimensional laser scanner to observe the slope erosion changes after rainfall events and clarify the spatial changes of soil aggregate stability and its relationship with slope micro-topography by combining geostatistics and generalized additive model (GAM). The results showed that the area of serious water erosion in the lower part of the slope accounted for 38.67% of the slope, and the micro-topography index of the slope changed obviously after rainfall, with the slope increasing by 3.1%, the surface roughness increasing by 5.34%, the surface cutting degree increasing by 26.67%, and the plane curvature decreasing by 61.7%. In addition, the GAM model was used to fit the multivariate variables. The results revealed that the slope and surface roughness were the key factors affecting the stability of water-stable aggregate. The slope and surface roughness were negatively correlated with the stability of water-stable aggregates.

Keywords