Atoms (Aug 2020)
Partial Photoionization Cross Sections of Chromium from the Ground and Excited States
Abstract
Partial and total photoionization cross sections of iron-peak elements are important for the determination of abundances in late-type stars and nebular objects. We have investigated photoionization of neutral chromium from the ground and excited states in the low energy region from the first ionization threshold at 6.77 eV to 30 eV. Accurate descriptions of the initial bound states of Cr I and the final residual Cr II ionic states have been obtained in the multiconfiguration Hartree-Fock method together with adjustable configuration expansions and term-dependent non-orthogonal orbitals. The B-spline R-matrix method has been used for the calculation of photoionization cross sections. The 194 LS final ionic states of Cr II 3d44s, 3d34s2, 3d5, 3d44p, and 3d34s4p principal configurations have been included in the close-coupling expansion. The inclusion of all terms of these configurations has significant impact on the near-threshold resonance structures as well as on the nonresonant background cross sections. Total photoionization cross sections from the ground 3d54sa7S and excited 3d54sa5S, 3d44s2a5D, 3d54pz5P, and 3d44s4py5P states of Cr I have been compared with other available R-matrix calculation to estimate the likely uncertainties in photoionization cross sections. We analyzed the partial photoionization cross sections for leaving the residual ion in various states to identify the important scattering channels, and noted that 3d electron ionization channel becomes dominant at higher energies.
Keywords