Heliyon (Jul 2024)

A shock-tube experimental and kinetic simulation study on the autoignition of methane at ultra-lean and lean conditions

  • Ziwen Zhao,
  • Yeteng Wang,
  • Jinchao Zhang,
  • Jinhu Liang,
  • Yang Zhang,
  • Fengqi Zhao,
  • Quan-De Wang

Journal volume & issue
Vol. 10, no. 14
p. e34204

Abstract

Read online

Coalbed methane represents an important kind of natural gas resource in many countries. However, the low-concentration property of coalbed methane limits its applications. To gain insight into the combustion kinetics of coalbed methane and facilitate its combustion utilization, this work reports an experimental and kinetic simulation study on the autoignition properties of methane at ultra-lean and lean conditions. A shock-tube (ST) facility is used for ignition delay time (IDT) measurements with equivalence ratios at 0.5, 0.1, and 0.05 with pressure at 2 and 10 bar under the temperature ranging from 1320 to 1850 K. The measured IDTs can be correlated into a general Arrhenius expression, and the equivalence ratio effect on IDTs is then analyzed. Seven detailed chemical kinetic mechanisms are employed to predict the IDTs and statistical error indicators are used to evaluate their performance. Detailed kinetic analysis via sensitivity and reaction path analysis is performed to uncover the kinetic differences among the seven mechanisms. It is shown that some of the reaction paths only exist in the NUIGMech1.3 mechanism, while the other detailed mechanisms do not consider them. Reaction path analysis indicates that the reactions related to O2, OH and O species become more important compared to the reactions involving CH3 and H radicals as the equivalence ratio decreases from lean to ultra-lean conditions. Detailed chemical kinetics analysis is also conducted to demonstrate the uncertainty of key reactions. The present work should be valuable to gain insight into the methane ignition characteristics and to facilitate kinetic mechanism optimization of methane combustion.

Keywords