PLoS ONE (Jan 2018)

Characterization of EGF-guided MDA-MB-231 cell chemotaxis in vitro using a physiological and highly sensitive assay system.

  • Verena Biswenger,
  • Nina Baumann,
  • Johannes Jürschick,
  • Martina Häckl,
  • Christopher Battle,
  • Jan Schwarz,
  • Elias Horn,
  • Roman Zantl

DOI
https://doi.org/10.1371/journal.pone.0203040
Journal volume & issue
Vol. 13, no. 9
p. e0203040

Abstract

Read online

Chemotactic cell migration is a central mechanism during cancer cell invasion and hence metastasis. In order to mimic in vivo conditions, we used a three-dimensional hydrogel matrix made of collagen I and a stable gradient-generating chemotaxis assay system, which is commercially available (μ-Slide Chemotaxis) to characterize epidermal growth factor (EGF)-induced chemotaxis of the human breast cancer cell line MDA-MB-231. Surprisingly, chemotactic effects of EGF on MDA-MB-231 cells could neither be observed in the standard growth medium DMEM/F-12 supplemented with 10% serum nor in starvation medium. In contrast, after adapting the cells to the serum-free growth medium UltraCULTURETM, significant chemotactic effects could be measured with high sensitivity. The extremely time-stable linear gradients, generated in the chemotaxis chamber, led to consistent directional migration of MDA-MB-231 cells. Dose-response experiments showed increased directional and kinetic response of MDA-MB-231 cells towards stable gradients of EGF. While EGF-guided directional migration (chemotaxis) was highly concentration-dependent with the highest response at 1.5 nM/mm EGF, we found that the chemokinetic effect induced by EGF was concentration-independent. Both, blocking the ligand-binding domain of the EGF receptor by an antibody (monoclonal anti-EGFR antibody 225) and inhibition of its kinase domain by a small molecule inhibitor (AG1478) led to a reduction in EGF-induced directed migration. The high sensitivity of the assay even allowed us to observe synergistic effects in EGF-receptor inhibition using a combination of low doses of both inhibitor types. Those results validate the fact that EGF is a potent guidance cue for MDA-MB-231 cell migration and help to understand the mechanism behind chemotaxis-driven cancer metastasis.