Photonics (Sep 2022)

High Performance Planar Antimony-Based Superlattice Photodetectors Using Zinc Diffusion Grown by MBE

  • Jiakai Li,
  • R. K. Saroj,
  • Steven Slivken,
  • V. H. Nguyen,
  • Gail Brown,
  • Manijeh Razeghi

DOI
https://doi.org/10.3390/photonics9090664
Journal volume & issue
Vol. 9, no. 9
p. 664

Abstract

Read online

In this letter, we report a mid-wavelength infrared (MWIR) planar photodetector based on InAs/InAs1−xSbx type-II superlattices (T2SLs) that has a cut-off wavelength of 4.3 μm at 77 K. The superlattice for the device was grown by molecular beam epitaxy while the planar device structure was achieved by Zinc diffusion process in a metal–organic chemical vapor deposition reactor. At 77 K, the peak responsivity and the corresponding quantum efficiency had the value of 1.42 A/W and 48% respectively at 3.7 μm under −20 mV for the MWIR planar photodetector. At 77 K, the MWIR planar photodetector exhibits a dark current density of 2.0 × 10−5 A/cm2 and the R0A value of ~3.0 × 102 Ω∙cm2 under −20 mV, which yielded a specific detectivity of 4.0 × 1011 cm·Hz1/2/W at 3.7 μm. At 150 K, the planar device showed a dark current density of 6.4 × 10−5 A/cm2 and a quantum efficiency of 49% at ~3.7 μm under −20 mV, which yielded a specific detectivity of 2.0 × 1011 cm·Hz1/2/W.

Keywords