Frontiers in Artificial Intelligence (Sep 2024)

Comparing emotions in ChatGPT answers and human answers to the coding questions on Stack Overflow

  • Somayeh Fatahi,
  • Julita Vassileva,
  • Chanchal K. Roy

DOI
https://doi.org/10.3389/frai.2024.1393903
Journal volume & issue
Vol. 7

Abstract

Read online

IntroductionRecent advances in generative Artificial Intelligence (AI) and Natural Language Processing (NLP) have led to the development of Large Language Models (LLMs) and AI-powered chatbots like ChatGPT, which have numerous practical applications. Notably, these models assist programmers with coding queries, debugging, solution suggestions, and providing guidance on software development tasks. Despite known issues with the accuracy of ChatGPT’s responses, its comprehensive and articulate language continues to attract frequent use. This indicates potential for ChatGPT to support educators and serve as a virtual tutor for students.MethodsTo explore this potential, we conducted a comprehensive analysis comparing the emotional content in responses from ChatGPT and human answers to 2000 questions sourced from Stack Overflow (SO). The emotional aspects of the answers were examined to understand how the emotional tone of AI responses compares to that of human responses.ResultsOur analysis revealed that ChatGPT’s answers are generally more positive compared to human responses. In contrast, human answers often exhibit emotions such as anger and disgust. Significant differences were observed in emotional expressions between ChatGPT and human responses, particularly in the emotions of anger, disgust, and joy. Human responses displayed a broader emotional spectrum compared to ChatGPT, suggesting greater emotional variability among humans.DiscussionThe findings highlight a distinct emotional divergence between ChatGPT and human responses, with ChatGPT exhibiting a more uniformly positive tone and humans displaying a wider range of emotions. This variance underscores the need for further research into the role of emotional content in AI and human interactions, particularly in educational contexts where emotional nuances can impact learning and communication.

Keywords