Chemical and Process Engineering (Dec 2017)
The influence of supercritical foaming conditions on properties of polymer scaffolds for tissue engineering
Abstract
The results of experimental investigations into foaming process of poly(ε-caprolactone) using supercritical CO2 are presented. The objective of the study was to explore the aspects of fabrication of biodegradable and biocompatible scaffolds that can be applied as a temporary three-dimensional extracellular matrix analog for cells to grow into a new tissue. The influence of foaming process parameters, which have been proven previously to affect significantly scaffold bioactivity, such as pressure (8-18 MPa), temperature (323-373 K) and time of saturation (1-6 h) on microstructure and mechanical properties of produced polymer porous structures is presented. The morphology and mechanical properties of considered materials were analyzed using a scanning electron microscope (SEM), x-ray microtomography (μ-CT) and a static compression test. A precise control over porosity and morphology of obtained polymer porous structures by adjusting the foaming process parameters has been proved. The obtained poly(ε-caprolactone) solid foams prepared using scCO2 have demonstrated sufficient mechanical strength to be applied as scaffolds in tissue engineering.
Keywords