PLoS ONE (Jan 2014)

Wnt signaling in form deprivation myopia of the mice retina.

  • Mingming Ma,
  • Zhengwei Zhang,
  • Ergang Du,
  • Wenjing Zheng,
  • Qing Gu,
  • Xun Xu,
  • Bilian Ke

DOI
https://doi.org/10.1371/journal.pone.0091086
Journal volume & issue
Vol. 9, no. 4
p. e91086

Abstract

Read online

BACKGROUND: The canonical Wnt signaling pathway plays important roles in cellular proliferation and differentiation, axonal outgrowth, cellular maintenance in retinas. Here we test the hypothesis that elements of the Wnt signaling pathway are involved in the regulation of eye growth and prevention of myopia, in the mouse form-deprivation myopia model. METHODOLOGY/PRINCIPAL FINDINGS: (1) One hundred twenty-five C57BL/6 mice were randomly distributed into form-deprivation myopia and control groups. Form-deprivation myopia (FDM) was induced by suturing the right eyelid, while the control group received no treatment. After 1, 2, and 4 weeks of treatment, eyes were assessed in vivo by cycloplegic retinoscopic refraction and axial length measurement by photography or A-scan ultrasonography. Levels of retinal Wnt2b, Fzd5 and β-catenin mRNA and protein were evaluated using RT-PCR and western blotting, respectively. (2) Another 96 mice were divided into three groups: control, drugs-only, and drugs+FDM (by diffuser). Experimentally treated eyes in the last two groups received intravitreal injections of vehicle or the proteins, DKK-1 (Wnt-pathway antagonist) or Norrin (Wnt-pathway agonist), once every three days, for 4 injections total. Axial length and retinoscopic refraction were measured on the 14th day of form deprivation. Following form-deprivation for 1, 2, and 4 weeks, FDM eyes had a relatively myopic refractive error, compared with contralateral eyes. There were no significant differences in refractive error between right and left eye in control group. The amounts of Wnt2b, Fzd5 and β-catenin mRNA and protein were significantly greater in form-deprived myopia eyes than in control eyes.DKK-1 (antagonist) reduced the myopic shift in refractive error and increase in axial elongation, whereas Norrin had the opposite effect in FDM eyes. CONCLUSIONS/SIGNIFICANCE: Our studies provide the first evidence that the Wnt2b signaling pathway may play a role in the development and progression of form-deprivation myopia, in a mammalian model.