Frontiers in Microbiology (Apr 2022)

Continuous Production of Human Epidermal Growth Factor Using Escherichia coli Biofilm

  • Mengting Li,
  • Mengting Li,
  • Zhenyu Wang,
  • Miao Zhou,
  • Chong Zhang,
  • Kaiqi Zhi,
  • Shuli Liu,
  • Xiujuan Sun,
  • Zhi Wang,
  • Jinle Liu,
  • Dong Liu,
  • Dong Liu,
  • Dong Liu

DOI
https://doi.org/10.3389/fmicb.2022.855059
Journal volume & issue
Vol. 13

Abstract

Read online

Increasing demand for recombinant proteins necessitates efficient protein production processes. In this study, a continuous process for human epidermal growth factor (hEGF) secretion by Escherichia coli was developed by taking advantage of biofilm formation. Genes bcsB, fimH, and csgAcsgB that have proved to facilitate biofilm formation and some genes moaE, yceA, ychJ, and gshB potentially involved in biofilm formation were examined for their effects on hEGF secretion as well as biofilm formation. Finally, biofilm-based fermentation processes were established, which demonstrated the feasibility of continuous production of hEGF with improved efficiency. The best result was obtained from ychJ-disruption that showed a 28% increase in hEGF secretion over the BL21(DE3) wild strain, from 24 to 32 mg/L. Overexpression of bcsB also showed great potential in continuous immobilized fermentation. Overall, the biofilm engineering here represents an effective strategy to improve hEGF production and can be adapted to produce more recombinant proteins in future.

Keywords