A Semantically Annotated 15-Class Ground Truth Dataset for Substation Equipment to Train Semantic Segmentation Models
Andreas Anael Pereira Gomes,
Francisco Itamarati Secolo Ganacim,
Fabiano Gustavo Silveira Magrin,
Nara Bobko,
Leonardo Göbel Fernandes,
Anselmo Pombeiro,
Eduardo Félix Ribeiro Romaneli
Affiliations
Andreas Anael Pereira Gomes
Graduate Program in Energy Systems, Universidade Tecnológica Federal do Paraná (UTFPR), 3165 Sete de Setembro Ave, Curitiba 80230-901, PR, Brazil
Francisco Itamarati Secolo Ganacim
Tecgraf Institute of Technical-Scientific Software Development of PUC-Rio, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), 225 Marquês de São Vicente St, Building Pe. Belisário Velloso, Rio de Janeiro 22453-900, RJ, Brazil
Fabiano Gustavo Silveira Magrin
Graduate Program in Energy Systems, Universidade Tecnológica Federal do Paraná (UTFPR), 3165 Sete de Setembro Ave, Curitiba 80230-901, PR, Brazil
Nara Bobko
Professional Master’s Degree in Mathematics in National Network, Universidade Tecnológica Federal do Paraná (UTFPR), 3165 Sete de Setembro Ave, Curitiba 80230-901, PR, Brazil
Leonardo Göbel Fernandes
Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), 3165 Sete de Setembro Ave, Curitiba 80230-901, PR, Brazil
Anselmo Pombeiro
Operation and Maintenance Engineering Superintendence, Copel, 158 José Izidoro Biazetto St, Curitiba 81200-240, PR, Brazil
Eduardo Félix Ribeiro Romaneli
Graduate Program in Energy Systems, Universidade Tecnológica Federal do Paraná (UTFPR), 3165 Sete de Setembro Ave, Curitiba 80230-901, PR, Brazil
The lack of annotated semantic segmentation datasets for electrical substations in the literature poses a significant problem for machine learning tasks; before training a model, a dataset is needed. This paper presents a new dataset of electric substations with 1660 images annotated with 15 classes, including insulators, disconnect switches, transformers and other equipment commonly found in substation environments. The images were captured using a combination of human, fixed and AGV-mounted cameras at different times of the day, providing a diverse set of training and testing data for algorithm development. In total, 50,705 annotations were created by a team of experienced annotators, using a standardized process to ensure accuracy across the dataset. The resulting dataset provides a valuable resource for researchers and practitioners working in the fields of substation automation, substation monitoring and computer vision. Its availability has the potential to advance the state of the art in this important area.