Scientific Reports (Aug 2018)

CEACAM1 promotes melanoma metastasis and is involved in the regulation of the EMT associated gene network in melanoma cells

  • Daniel Wicklein,
  • Benjamin Otto,
  • Anna Suling,
  • Eva Elies,
  • Georg Lüers,
  • Tobias Lange,
  • Susanne Feldhaus,
  • Hanna Maar,
  • Jennifer Schröder-Schwarz,
  • Georg Brunner,
  • Christoph Wagener,
  • Udo Schumacher

DOI
https://doi.org/10.1038/s41598-018-30338-4
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 13

Abstract

Read online

Abstract We investigated the functional role of CEACAM1 in a spontaneous metastasis xenograft model of human melanoma in scid mice using BRAF wildtype MeWo cells with and without RNAi mediated knockdown of CEACAM1. Tumors from the xenograft model were subjected to whole genome expression analysis and metastasis was quantified histologically. Results and identified markers were verified using tissue samples of over 100 melanoma patients. Knockdown of CEACAM1 prolonged the animals’ survival by significantly reducing subcutaneous growth of MeWo tumors and spontaneous lung metastasis. Microarray analysis revealed a strong influence of CEACAM1 knockdown on the network of EMT associated genes in the xenograft tumors (e.g. downregulation of BRAF, FOSL1, NRAS and TWIST). IGFBP7 and Latexin (highest up- and downregulated expression in microarray analysis) were found to be associated with longer and shorter survival, respectively, of melanoma patients. High FOSL1 and altered TWIST1 expression were found to be correlated with shortened survival in the cohort of melanoma patients. After a stepwise selection procedure combining above markers, multivariate analysis revealed IGFBP7, Latexin and altered TWIST to be prognostic markers for death. CEACAM1 could be a target for melanoma therapy as an alternative to (or in combination with) immune checkpoint and BRAF inhibitors.