BMC Biology (Sep 2024)

Phylogeny and evolution of hemipteran insects based on expanded genomic and transcriptomic data

  • Nan Song,
  • Miao-Miao Wang,
  • Wei-Chao Huang,
  • Zhi-Yi Wu,
  • Renfu Shao,
  • Xin-Ming Yin

DOI
https://doi.org/10.1186/s12915-024-01991-1
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Hemiptera is the fifth species-rich order of insects and the most species-rich order of hemimetabolous insects, including numerous insect species that are of agricultural or medical significance. Despite much effort and recent advance in inferring the Hemiptera phylogeny, some high-level relationships among superfamilies remain controversial. Results We sequenced the genomes of 64 hemipteran species from 15 superfamilies and the transcriptomes of two additional scale insect species, integrating them with existing genomic and transcriptomic data to conduct a comprehensive phylogenetic analysis of Hemiptera. Our datasets comprise an average of 1625 nuclear loci of 315 species across 27 superfamilies of Hemiptera. Our analyses supported Cicadoidea and Cercopoidea as sister groups, with Membracoidea typically positioned as the sister to Cicadoidea + Cercopoidea. In most analyses, Aleyrodoidea was recovered as the sister group of all other Sternorrhyncha. A sister-group relationship was supported between Coccoidea and Aphidoidea + Phylloxeroidea. These relationships were further supported by four-cluster likelihood mapping analyses across diverse datasets. Our ancestral state reconstruction indicates phytophagy as the primary feeding strategy for Hemiptera as a whole. However, predation likely represents an ancestral state for Heteroptera, with several phytophagous lineages having evolved from predatory ancestors. Certain lineages, like Lygaeoidea, have undergone a reversal transition from phytophagy to predation. Our divergence time estimation placed the diversification of hemipterans to be between 60 and 150 million years ago. Conclusions By expanding phylogenomic taxon sampling, we clarified the superfamily relationships within the infraorder Cicadomorpha. Our phylogenetic analyses supported the sister-group relationship between the superfamilies Cicadoidea and Cercopoidea, and the superfamily Membracoidea as the sister to Cicadoidea + Cercopoidea. Our divergence time estimation supported the close association of hemipteran diversification with the evolutionary success and adaptive radiation of angiosperms during the Cretaceous period.

Keywords