Journal of Infrastructure Preservation and Resilience (Feb 2024)
Modeling retroreflectivity degradation of pavement markings across the US with advanced machine learning algorithms
Abstract
Abstract Retroreflectivity is the primary metric that controls the visibility of pavement markings during nighttime and in adverse weather conditions. Maintaining the minimum level of retroreflectivity as specified by Federal Highway Administration (FHWA) is crucial to ensure safety for motorists. The key objective of this study was to develop robust retroreflectivity prediction models that can be used by transportation agencies to reliably predict the retroreflectivity of their pavement markings utilizing the initially measured retroreflectivity and other key project conditions. A total of 49,632 transverse skip retroreflectivity measurements of seven types of marking materials were retrieved from the eight most recent test decks covered under the National Transportation Product Evaluation Program (NTPEP). Decision Tree (DT) and Artificial Neural Network (ANN) algorithms were considered for developing performance prediction models to estimate retroreflectivity at different prediction horizons for up to three years. The models were trained with randomly selected 80% data points and tested with the remaining 20% data points. Sequential ANN models exhibited better performance with the testing data than the sequential DT models. The training and testing R2 ranges of the sequential ANN models were from 0.76 to 0.96 and 0.55 to 0.94, respectively, which were significantly higher than the R2 range (0.14 to 0.75) from the regression models proposed in past studies. Initial or predicted retroreflectivity, snowfall, and traffic were found to be the most important inputs to model predictions.
Keywords