International Journal of Molecular Sciences (Dec 2022)

The Role of <i>Helicobacter pylori</i> Neutrophil-Activating Protein in the Pathogenesis of <i>H. pylori</i> and Beyond: From a Virulence Factor to Therapeutic Targets and Therapeutic Agents

  • Hua-Wen Fu,
  • Yu-Chang Lai

DOI
https://doi.org/10.3390/ijms24010091
Journal volume & issue
Vol. 24, no. 1
p. 91

Abstract

Read online

Helicobacter pylori neutrophil-activating protein (HP-NAP), a major virulence factor of H. pylori, plays a role in bacterial protection and host inflammation. HP-NAP activates a variety of innate immune cells, including neutrophils, monocytes, and mast cells, to induce their pro-oxidant and pro-inflammatory activities. This protein also induces T-helper type 1 (Th1) immune response and cytotoxic T lymphocyte (CTL) activity, supporting that HP-NAP is able to promote gastric inflammation by activation of adaptive immune responses. Thus, HP-NAP is a potential therapeutic target for the treatment of H. pylori-induced gastric inflammation. The inflammatory responses triggered by HP-NAP are mediated by a PTX-sensitive G protein-coupled receptor and Toll-like receptor 2. Drugs designed to block the interactions between HP-NAP and its receptors could alleviate the inflammation in gastric mucosa caused by H. pylori infection. In addition, HP-NAP acts as a promising therapeutic agent for vaccine development, allergy treatment, and cancer immunotherapy. The high antigenicity of HP-NAP makes this protein a component of vaccines against H. pylori infection. Due to its immunomodulatory activity to stimulate the Th1-inducing ability of dendritic cells, enhance Th1 immune response and CTL activity, and suppress Th2-mediated allergic responses, HP-NAP could also act as an adjuvant in vaccines, a drug candidate against allergic diseases, and an immunotherapeutic agent for cancer. This review highlights the role of HP-NAP in the pathogenesis of H. pylori and the potential for this protein to be a therapeutic target in the treatment of H. pylori infection and therapeutic agents against H. pylori-associated diseases, allergies, and cancer.

Keywords