Heliyon (Jan 2024)

SREBP1 deficiency diminishes glutamate-mediated HT22 cell damage and hippocampal neuronal pyroptosis induced by status epilepticus

  • Xing Ye,
  • Jun-Yi Lin,
  • Ling-Xia Chen,
  • Xue-chun Wu,
  • Kai-Jun Ma,
  • Bei-Xu Li,
  • You-Xin Fang

Journal volume & issue
Vol. 10, no. 1
p. e23945

Abstract

Read online

Status epilepticus (SE) is a life-threatening disorder that can result in death or severe brain damage, and there is a substantial body of evidence suggesting a strong association between pyroptosis and SE. Sterol regulatory element binding protein 1 (SREBP1) is a significant transcription factor participating in both lipid homeostasis and glucose metabolism. However, the function of SREBP1 in pyroptosis during SE remains unknown. In this study, we established a SE rat model by intraperitoneal injection of lithium chloride and pilocarpine in vivo. Additionally, we treated HT22 hippocampal cells with glutamate to create neuronal injury models in vitro. Our results demonstrated a significant induction of SREBP1, inflammasomes, and pyroptosis in the hippocampus of SE rats and glutamate-treated HT22 cells. Moreover, we found that SREBP1 is regulated by the mTOR signaling pathway, and inhibiting mTOR signaling contributed to the amelioration of SE-induced hippocampal neuron pyroptosis, accompanied by a reduction in SREBP1 expression. Furthermore, we conducted siRNA-mediated knockdown of SREBP1 in HT22 cells and observed a significant reversal of glutamate-induced cell death, activation of inflammasomes, and pyroptosis. Importantly, our confocal immunofluorescence analysis revealed the co-localization of SREBP1 and NLRP1. In conclusion, our findings suggest that deficiency of SREBP1 attenuates glutamate-induced HT22 cell injury and hippocampal neuronal pyroptosis in rats following SE. Targeting SREBP1 may hold promise as a therapeutic strategy for SE.

Keywords