Applied Sciences (Oct 2018)
Influence of Illumination Polarization and Target Structure on Measurement Sensitivity of Through-Focus Scanning Optical Microscopy
Abstract
Unlike the optical information taken from a single in-focus image of general optical microscopy, through-focus scanning optical microscopy (TSOM) involves scanning a target through the focus and capturing of a series of images. These images can be used to conduct three-dimensional inspection and metrology with nanometer-scale lateral and vertical sensitivity. The sensitivity of TSOM strongly depends on many mechanical and optical factors. In this study, how illumination polarization and target structure affect the sensitivity of TSOM is analyzed. Firstly, the complete imaging procedure of the polarized light is investigated. Secondly, through-focus scanning results of different targets with two illumination polarizations are simulated using the finite-difference time-domain method. Thirdly, a few experiments are performed to verify the influence of illumination polarization and target structures on the sensitivity of TSOM. Both the results of the simulation and experiments illustrate an apparent influence of polarization on the sensitivity of inspecting the targets with center asymmetric structures. For enhanced sensitivity, illumination polarization should be perpendicular to the target texture. This conclusion is meaningful to adjust illumination polarization purposefully for different structure characteristics and improve the sensitivity of metrology.
Keywords