Frontiers in Ecology and Evolution (May 2023)

Spatial pattern optimization of rural production-living-ecological function based on coupling coordination degree in shallow mountainous areas of Quyang County, Hebei Province, China

  • Sen Wang,
  • Jian Tian,
  • Aihemaiti Namaiti,
  • Junmo Lu,
  • Yuanzhen Song

DOI
https://doi.org/10.3389/fevo.2023.1169007
Journal volume & issue
Vol. 11

Abstract

Read online

IntroductionThe shallow mountainous area in Hebei province is a crucial part of the ecological security barrier and regional ecological conservation construction in the Beijing-Tianjin-Hebei (BTH) region. In recent years, the contradictions in the development of the rural “production-living-ecological” function (PLEF) in shallow mountainous areas are prominent, so optimize its spatial pattern is beneficial to rural sustainable development. But there are significant problems in the existing research, such as the lack of fine-scale research and effective guidance for rural PLEF. Based on this, this study takes Quyang County as an example, starts from the perspective of PLEF coordinated development, finally puts forward the optimization strategy of rural production-living-ecological space (PLES) pattern by evaluating rural PLEF and its coupling co-scheduling.MethodsThis study first fused multi-source data such as POI and remote sensing images to build a comprehensive evaluation system of rural PLES, combined with entropy weight method and analytic hierarchy process to give weight to various indicators, and calculated the PLEF distribution of Quyang County on the 300 × 300m grid scale. Then the collaborative development of PLEF is measured by coupling coordination degree model. Finally, according to PLEF and its coupling and coordination, the functional space types are divided according to the principles of coordinated development and ecological optimization, and the optimization strategy of PLES pattern is proposed on the village scale.Results(1) The spatial distribution of PLEF in Quyang County is significantly different, and the order of functional intensity is: ecological space (ES) > production space (PS) > living space (LS). (2) The PLEF coupling coordination degree generally presents the spatial distribution characteristics of “low in the north and high in the south”, which is highly related to its topographic features. The high-value areas are mainly spread over southern plains with developed economy and rich ecological resources, while the low-value areas are located in the northern mountains and the central hills. (3) On the grid scale, the PLES pattern is identified as six types: production-living-ecological balance space (PLEBS), production-living space (PLS), production-ecological space (PES), living-ecological space (LES), ES and PS. Among them, the proportion of PLEBS and ES is larger. (4) On the village scale, it is suggested that PLEBS villages further emphasize high-quality coordinated development; ecological function leading optimization type (EFLOT) villages adhere to ecological priorities and ensure the development of ecological space functions; villages with composite functions should combine their own advantages and the spatial characteristics of the surrounding countryside, optimize and control infrastructure configuration, industrial structure, ecological protection and other aspects of classification, overcome shortcomings and improve the coordination of the PLEF.DiscussionBased on previous studies, this paper explored and improved the research scale, analysis methods, evaluation indexes and optimization ideas in the field of rural PLEF. Therefore, the results can guide for the high-quality coordinated development of territorial space and rural revitalization construction of counties in shallow mountainous areas.

Keywords