Attentional effects on local V1 microcircuits explain selective V1-V4 communication
Christini Katsanevaki,
André M. Bastos,
Hayriye Cagnan,
Conrado A. Bosman,
Karl J. Friston,
Pascal Fries
Affiliations
Christini Katsanevaki
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt 60528, Germany; International Max Planck Research School for Neural Circuits, Frankfurt 60438, Germany; Corresponding author at: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt 60528, Germany.
André M. Bastos
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt 60528, Germany; Department of Psychology and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
Hayriye Cagnan
The Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
Conrado A. Bosman
Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 EN, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
Karl J. Friston
The Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
Pascal Fries
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt 60528, Germany; International Max Planck Research School for Neural Circuits, Frankfurt 60438, Germany; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 EN, the Netherlands
Selective attention implements preferential routing of attended stimuli, likely through increasing the influence of the respective synaptic inputs on higher-area neurons. As the inputs of competing stimuli converge onto postsynaptic neurons, presynaptic circuits might offer the best target for attentional top-down influences. If those influences enabled presynaptic circuits to selectively entrain postsynaptic neurons, this might explain selective routing. Indeed, when two visual stimuli induce two gamma rhythms in V1, only the gamma induced by the attended stimulus entrains gamma in V4. Here, we modelled induced responses with a Dynamic Causal Model for Cross-Spectral Densities and found that selective entrainment can be explained by attentional modulation of intrinsic V1 connections. Specifically, local inhibition was decreased in the granular input layer and increased in the supragranular output layer of the V1 circuit that processed the attended stimulus. Thus, presynaptic attentional influences and ensuing entrainment were sufficient to mediate selective routing.