Pharmaceutical Sciences (Jul 2022)
EZH2 Knockdown Upregulates Expression of the Genes Involved in T-ALL Cell Differentiation
Abstract
Background: EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit), as one of the polycyclic group proteins (PcGs), is an epigenetic regulator that plays a crucial role in the pathophysiology of hematologic malignancies through regulating cell differentiation. Also, it is well known that aberrant expression of specific transcription factors can be involved in the pathogenesis of various cancers. Herein, we aimed to suppress EZH2 expression in MOLT-4 cells, T-ALL (T cell acute lymphoblastic leukemia) cell line, and evaluate the role of EZH2 on the expression of transcription factors that regulate T cell maturation, differentiation, and apoptosis. Methods: EZH2-siRNA was transfected into MOLT-4 cells, and the expression levels of EZH2, NOTCH1, TCF1, IKZF1, and NFATC1 were measured using real-time PCR. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was performed to study the effect of EZH2 knockdown on MOLT-4 cell viability. The apoptosis rate of EZH2-siRNA transfected cells was assessed by flow cytometry. The interaction of mentioned genes was investigated using STRING and GO (gene ontology). Results: Our results have shown that EZH2-siRNA transfection can substantially decrease EZH2 expression in MOLT-4 cells. Besides, EZH2 suppression can upregulate NOTCH1, TCF1, IKZF1, and NFATC1 expression levels. EZH2 knockdown does not affect the viability and apoptosis of MOLT-4 cells. The most remarkable protein-protein interaction of EZH2 has been with NOTCH1. Besides, GO analysis has demonstrated that EZH2, NOTCH1, TCF1, IKZF1, and NFATC1 were located within nucleoplasm and can regulate RNA polymerase II-mediated transcription. Conclusion: MOLT-4 cells harbor increased expression of EZH2 in comparison with normal human T cells. EZH2 knockdown can upregulate the expression of the transcription factors involved in T cell differentiation. Thus, EZH2 can halt the differentiation of immature lymphoblastic T cells.
Keywords