Journal of Marine Science and Engineering (Jul 2023)

Properties and Model of a Lacustrine Shale Oil Reservoir: A Case Study of the Upper Fourth Member and Lower Third Member of the Shahejie Formation in Dongying Sag and Zhanhua Sag, Jiyang Depression

  • Cunfei Ma,
  • Xianxu Fang,
  • Xiaonan Ma,
  • Xiantai Liu,
  • Bingkun Xu,
  • Xinmin Ge

DOI
https://doi.org/10.3390/jmse11071441
Journal volume & issue
Vol. 11, no. 7
p. 1441

Abstract

Read online

By combining thermal simulation experiments with core data, thin sections, scanning electron microscopy (SEM), source rock, and high-pressure mercury and gas adsorption analysis, this paper evaluates the properties and models of shale reservoirs in the upper fourth member and the lower third member of the Shahejie Formation in Dongying Sag and Zhanhua Sag. The results show that the oil shale is a high-quality source rock with petroleum generation potential. Inorganic mineral pores, organic pores, and fractures have developed with petroleum storage capacity. Clay and organic-rich soft shale lithofacies are interbedded with carbonate-rich hard shale lithofacies to form sandwich-type source–reservoir–caprock assemblages with internal sealing properties. Bitumen occurs mostly in the free state, and to a lesser extent is adsorbed, and shows flow characteristics. The migration resistance of the bitumen is displacement pressure, including capillary force and adsorption resistance, and the main force is pore fluid pressure. The migration modes of the bitumen include both subcritical flow and instantaneous flow, which are controlled by pore fluid pressure, displacement pressure, and the rock’s fracture strength. Owing to the multi-scale characteristics of the shale reservoir space, a vein-type model of a multi-scale progressive transport network is developed that obeys Murray’s law with a dominant migration pathway in the shale reservoir. The shale oil reservoir is a special lithologic reservoir controlled by the sedimentary environment and has self-generation, self-storage, and self-sealing characteristics with developed pore fluid overpressure and a multi-scale transport network.

Keywords