EURASIP Journal on Wireless Communications and Networking (Sep 2021)

Performance analysis of congestion-aware secure broadcast channels

  • Antonia Arvanitaki,
  • Nikolaos Pappas,
  • Niklas Carlsson,
  • Parthajit Mohapatra,
  • Oleg Burdakov

DOI
https://doi.org/10.1186/s13638-021-02046-7
Journal volume & issue
Vol. 2021, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Congestion-aware scheduling in case of downlink cellular communication has ignored the distribution of diverse content to different clients with heterogeneous secrecy requirements. Other possible application areas that encounter the preceding issue are secure offloading in mobile-edge computing, and vehicular communication. In this paper, we extend the work in Arvanitaki et al. (SN Comput Sci 1(1):53, 2019) by taking into consideration congestion and random access. Specifically, we study a two-user congestion-aware broadcast channel with heterogeneous traffic and different security requirements. We consider two randomized policies for selecting which packets to transmit, one is congestion-aware by taking into consideration the queue size, whereas the other one is congestion-agnostic. We analyse the throughput and the delay performance under two decoding schemes at the receivers, and provide insights into their relative security performance and into how congestion control at the queue holding confidential information can help decrease the average delay per packet. We show that the congestion-aware policy provides better delay, throughput, and secrecy performance for large arrival packet probabilities at the queue holding the confidential information. The derived results also take account of the self-interference caused at the receiver for whom confidential data is intended due to its full-duplex operation while jamming the communication at the other user. Finally, for two decoding schemes, we formulate our problems in terms of multi-objective optimization, which allows for finding a trade-off between the average packet delay for packets intended for the legitimate user and the throughput for the other user under congestion-aware policy.

Keywords