Applied Sciences (Feb 2022)
Performance Evaluation of Bio-Based Fractions Derived from <i>Bacillus</i> spp. for Potential In Situ Soil Stabilisation
Abstract
Current and future research focuses on the use of renewable technologies and materials to stabilise weak soils, of varying degrees, for road construction applications. Soil stabilisation is a method of strengthening a natural soil to meet this purpose. Our interest is in the use of bio-based components, derived from microbial growth processes, that contribute to the needed desirable strength characteristics for in situ soil stabilisation. This investigation focuses on novel Bacillus-based stabilisers obtained from the vegetative and spore growth stage. In this study, eighteen bio-based components were derived from a Bacillus licheniformis fermentation and extracted into various aqueous and non-aqueous fractions for strength property assessment. The strength properties of the treated soils (i.e., dolerite and weathered granite soil) were assessed via previously developed lab-scale equipment to rapidly pre-select the best performing fractions, (i.e., compression stress, erosion, abrasion, and water absorption tests). The effect of one superior performing prototype (a) was validated at large-scale, using standard erosion and abrasion tests (i.e., whole broth at 1.8% stabiliser concentrations), and showed resistance to abrasion (3.37 ± 0.03%) (p value ≤ 0.0001) and resistance to erosion (33.20 ± 0.15%) (p value ≤ 0.001). The elemental composition and microstructure of the bio-stabilised soil was determined using energy dispersive X-ray spectroscopy and scanning electron microscopy, respectively. This evaluation formed part of the selection of the best performing Bacillus derived fractions and achieved a proof of concept for the next phase of product prototype development. This study demonstrated a novel bio-mediated approach to the overall criteria for evaluation and selection of candidate product prototype/s, for stabilisation of two varying soils, and for potential application in road construction works.
Keywords