PLoS ONE (Jan 2020)
Controlling the development of the dengue vector Aedes aegypti using HR3 RNAi transgenic Chlamydomonas.
Abstract
The Aedes aegypti mosquito plays an important role in the spread of diseases, including epidemic ones, such as dengue fever, Zika virus disease, yellow fever, and chikungunya disease. To control the population of Ae.aegypti, we transferred an HR3 RNAi fragment into the microalgae Chlamydomonas, which serves as food for Ae.aegypti larvae. Results showed that the HR3 RNAi transgenic algal strains were lethal to Ae.aegypti. The integumentary system of larvae fed with HR3 RNAi transgenic algal strains was severely damaged. Muscles of the larvae were unevenly distributed and disordered, and their midgut showed disintegration of the intestinal cavity. RNA-Seq results demonstrated that on the 4th day of inoculation with the transgenic algae, the abundance of early expressed genes in the 20E signal transduction pathway of larvae fed with the HR3 RNAi transgenic algal strain significantly reduced. These genes include E74, E75, E93, and 20E receptor complex EcR/USP and FTZ-F1 gene regulated by HR3. In later experiments, a scale test of 300 Ae.aegypti eggs per group was carried out for 30 days, and the survival rate of Ae.aegypti fed with the HR3 RNAi transgenic strain was only 1.3%. These results indicate that the HR3 RNAi transgenic strain exerts obvious insecticidal effect.