European Journal of Radiology Open (Dec 2024)

The impact of deep learning image reconstruction of spectral CTU virtual non contrast images for patients with renal stones

  • Hong Zhu,
  • Deyan Kong,
  • Jiale Qian,
  • Xiaomeng Shi,
  • Jing Fan

Journal volume & issue
Vol. 13
p. 100599

Abstract

Read online

Purpose: To compare image quality and detection accuracy of renal stones between deep learning image reconstruction (DLIR) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) reconstructed virtual non-contrast (VNC) images and true non-contrast (TNC) images in spectral CT Urography (CTU). Methods: A retrospective analysis was conducted on images of 70 patients who underwent abdominal-pelvic CTU in TNC phase using non-contrast scan and contrast-enhanced corticomedullary phase (CP) and excretory phase (EP) using spectral scan. The TNC scan was reconstructed using ASIR-V70 % (TNC-AR70), contrast-enhanced scans were reconstructed using AR70, DLIR medium-level (DM), and high-level (DH) to obtain CP-VNC-AR70/DM/DH and EP-VNC-AR70/DM/DH image groups, respectively. CT value, image quality and kidney stones quantification accuracy were measured and compared among groups. The subjective evaluation was independently assessed by two senior radiologists using the 5-point Likert scale for image quality and lesion visibility. Results: DH images were superior to AR70 and DM images in objective image quality evaluation. There was no statistical difference in the liver and spleen (both P > 0.05), or within 6HU in renal and fat in CT value between VNC and TNC images. EP-VNC-DH had the lowest image noise, highest SNR, and CNR, and VNC-AR70 images had better noise and SNR performance than TNC-AR70 images (all p 0.05). Conclusion: The DLIR-reconstructed VNC images in CTU provide better image quality than the ASIR-V reconstructed TNC images and similar quantification accuracy for kidney stones for potential dose savings.The study highlights that deep learning image reconstruction (DLIR)-reconstructed virtual non-contrast (VNC) images in spectral CT Urography (CTU) offer improved image quality compared to traditional true non-contrast (TNC) images, while maintaining similar accuracy in kidney stone detection, suggesting potential dose savings in clinical practice.

Keywords