BMC Infectious Diseases (Aug 2020)

Genetic diversity of group A rotavirus in acute gastroenteritis outpatients in Shanghai from 2017 to 2018

  • Xiaozhou Kuang,
  • Xiaohuan Gong,
  • Xi Zhang,
  • Hao Pan,
  • Zheng Teng

DOI
https://doi.org/10.1186/s12879-020-05279-x
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Group A Rotavirus (RVA), despite being an important pathogen in hospitalized children, is less studied in pediatric outpatients, and even rarely investigated in adults. This study aims to understand the genetic diversity of RVA in outpatients across all age groups in Shanghai, and thus providing a molecular basis for vaccine implementation and evaluation. Methods Stool samples were first screened by Real-time Reverse Transcription Polymerase Chain Reaction (rRT-PCR). RVA genotyping was performed through the amplification of partial VP7 and VP4 gene. Strains of interest were further sequenced and analyzed using MEGA 6.0. Results Four thousand nine hundred one samples were collected, from which 7.61% (373 cases) were screened positive for RVA. RVA prevalence was higher in children (9.30%) than in adults (7.21%) (χ2 = 4.72, P < 0.05). 9.38% RVA positive cases had taken antibiotics before hospital visit while 49.60% had been prescribed antibiotics afterwards. RVA displayed a strong seasonality in both adults and children with a shared commonality in genotype repertoire, where G9P[8] was the most prevalent strain (67.96%) followed by G3P[8] (15.49%) and G1P[8] (12.32%). Meanwhile the first local case of fecal shedding of the G10P[15] vaccine strain was also discovered. Conclusions While the prevalence of rotavirus is highest during cold seasons, it is revealed for the first time that G9P[8] is the predominant genotype in both adults and pediatric outpatients. Clinically, higher occurrence of nausea or vomiting was observed in RVA positive cases. Antibiotic overuse was implicated in both non-clinical and clinical settings. The finding emphasizes the importance of RVA genotyping in surveillance as it provides the basis for new vaccine application as well as a baseline for future vaccine efficacy evaluation.

Keywords