Scientific Reports (Jul 2024)
A tumor targeted nano micelle carrying astragaloside IV for combination treatment of bladder cancer
Abstract
Abstract Immune checkpoint inhibitors (ICIs) are effective agents for tumor immunotherapy. However, their clinical effectiveness is unsatisfactory due to off-target effects and a suppressive immune microenvironment. This study developed a nanodrug delivery system for bladder cancer (BCa) using PCL-MPEG and PCL-PEG-CHO to synthesize internal hydrophobic and external hydrophilic micelles (PP) that encapsulated water-insoluble astragaloside IV (PPA). The aldehyde group on the surface of PPA reacted with the amino group of aPD-L1, allowing the decoration of this antibody on the surface of the micelles. The resultingPPA@aPD-L1effectively piggybacked astragaloside IV and aPD-L1 antibody. These findings suggest that PPA@aPD-L1 is relatively stable in circulation and efficiently binds to BCa cells with the aid of aPD-L1. Additionally, this strategy prolongs the drug’s retention time in tumors. Compared to PBS, PP, and PPA with PPA + aPD-L1 groups, PPA@aPD-L1significantly prolonged the survival of mice with BCa and reduced tumor volume. Mechanistic studies showed that PPA inhibited the NF-κB and STAT3 signaling pathways in tumor cells. Additionally, PPA@aPD-L1increased IFN-γ and decreased IL-10 expression in bladder tumors, affecting the number and type of intratumorally infiltrating T cells. Our study presents a simple and effective drug delivery system that combines herbal monomers with ICIs. It has demonstrated a potent ability to suppress tumor growth and holds potential for future applications.
Keywords