PLoS ONE (Jan 2013)

A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1.

  • Davide Danovi,
  • Amos Folarin,
  • Sabine Gogolok,
  • Christine Ender,
  • Ahmed M O Elbatsh,
  • Pär G Engström,
  • Stefan H Stricker,
  • Sladjana Gagrica,
  • Ana Georgian,
  • Ding Yu,
  • Kin Pong U,
  • Kevin J Harvey,
  • Patrizia Ferretti,
  • Patrick J Paddison,
  • Jane E Preston,
  • N Joan Abbott,
  • Paul Bertone,
  • Austin Smith,
  • Steven M Pollard

DOI
https://doi.org/10.1371/journal.pone.0077053
Journal volume & issue
Vol. 8, no. 10
p. e77053

Abstract

Read online

Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF(-/-), or p53(-/-)), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.