Molecules (Feb 2022)

Synthesis and Antimicrobial, Anticancer and Anti-Oxidant Activities of Novel 2,3-Dihydropyrido[2,3-d]pyrimidine-4-one and Pyrrolo[2,1-b][1,3]benzothiazole Derivatives via Microwave-Assisted Synthesis

  • Aamal A. Al-Mutairi,
  • Hend N. Hafez,
  • Abdel-Rhaman B. A. El-Gazzar,
  • Marwa Y. A. Mohamed

DOI
https://doi.org/10.3390/molecules27041246
Journal volume & issue
Vol. 27, no. 4
p. 1246

Abstract

Read online

In our attempt towards the synthesis and development of effective antimicrobial, anticancer and antioxidant agents, a novel series of 2,3-dihydropyrido[2,3-d]pyrimidin-4-one 7a–e and pyrrolo[2,1-b][1,3]benzothiazoles 9a–e were synthesized. The synthesis of 2-(1,3-benzo thiazol-2-yl)-3-(aryl)prop-2-enenitrile (5a–e) as the key intermediate was accomplished by a microwave efficient method. Via a new variety oriented synthetic microwave pathway, these highly functionalized building blocks allowed access to numerous fused heteroaromatic such as 7-amino-6-(1,3-benzo thiazol-2-yl)-5-(aryl)-2-thioxo-2,3dihydropyrido [2,3-d]pyrimidin-4(1H)-one 7a–e and 1-amino-2-(aryl)pyrrolo[2,1-b][1,3]benzothiazole-3-carbonitrile derivatives 9a–e in order to study their antimicrobial and anticancer activity. The present investigation offers effective and rapid new procedures for the synthesis of the newly polycondensed heterocyclic ring systems. All the newly synthesized compounds were evaluated for antimicrobial, anticancer and antioxidant activity. Compounds 7a,d, and 9a,d showed higher antimicrobial activity than cefotaxime and fluconazole while the remaining compounds exhibited good to moderate activity against bacteria and fungi. An anticancer evaluation of the newly synthesized compounds against the three tumor cell lines (lung cell NCI-H460, liver cancer HepG2 and colon cancer HCT-116) exhibited that compounds 7a, d, and 9a,d have higher cytotoxicity against the three human cell lines compared to doxorubicin as a reference drug. These compounds also exhibited higher antioxidant activity and a great ability to protect DNA from damage induced by bleomycin.

Keywords