Annals of the University of Oradea: Fascicle of Textiles, Leatherwork (May 2017)
MATHEMATICAL MODELLING OF THE SHIELDING EFFECTIVENESS FOR PES/STAINLESS STEEL FABRICS
Abstract
Textile screens for electromagnetic radiation represent a modern solution, due to their flexibility, lightweight and good mechanical resistance. Electromagnetic shielding is a must in various applications, while strict regulations are set for electromagnetic compatibility. Conductive fabrics are widely used for electronic equipment covers, RF suits or EMI protection tents. This paper aims to investigate the shielding effectiveness of conductive woven fabrics with stainless steel yarns at different weft distances [2,3,4,5 mm]. These conductive fabrics were investigated for their physical-mechanical properties (mass per surface unit, density on warp and weft direction and thickness), within the INCDTP accredited laboratories. The conductive fabrics as well as combinations thereof where tested for their shielding effectiveness accordingly to the standard ASTM ES 07, within the EMC laboratories of ICPE-CA. A signal generator, an amplifier, a TEM Cell and a spectrum analyser were used were used for this purpose. Graphs in logarithmic scale were issued for the shielding effectiveness analysis. Moreover, an experimental factorial plan was conceived for obtaining a mathematical model for the studied fabrics in relation to the weft distance between the conductive yarns. The coefficients of the mathematical model were obtained through the least squares regression method in Excel, while the response curve was designed in Matlab. The response curve enables the computation of intermediate values of the shielding effectiveness in relation to the distance between conductive yarns.