Defence Technology (Nov 2022)

Formation of adiabatic shearing band for high-strength Ti-5553 alloy: A dramatic thermoplastic microstructural evolution

  • Dong-yang Qin,
  • Ying-gang Miao,
  • Yu-long Li

Journal volume & issue
Vol. 18, no. 11
pp. 2045 – 2051

Abstract

Read online

By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti–5Al–5V–5Mo–3Cr (Ti-5553) alloy with lamellar microstructure and bimodal microstructure. Lamellar alloy tends to form adiabatic shearing band (ASB) at low compression strain, while bimodal alloy is considerably ASB-resistant. Comparing with the initial microstructure of Ti-5553 alloy, we find that the microstructure of the ASB changes dramatically. Adiabatic shear of lamellar Ti-5553 alloy not only results in the formation of recrystallized β nano-grains within the ASB, but also leads to the chemical redistribution of the alloying elements such as Al, V, Cr and Mo. As a result, the alloying elements distribute evenly in the ASB. In contrast, the dramatic adiabatic shear of bimodal alloy might give rise to the complete lamination of the globular primary α grain and the equiaxial prior β grain, which is accompanied by the dynamic recrystallization of α lamellae and β lamellae. As a result, ASB of bimodal alloy is composed of α/β nano-multilayers. Chemical redistribution does not occur in ASB of bimodal alloy. Bimodal Ti-5553 alloy should be a promising candidate for high performance armors with high mass efficiency due to the processes high dynamic flow stress and excellent ASB-resistance.

Keywords