Materials (Jun 2024)

Microstructure and Erosion Wear of In Situ TiC-Reinforced Co-Cr-W-C (Stellite 6) Laser-Cladded Coatings

  • Jacek Górka,
  • Tomasz Poloczek,
  • Damian Janicki,
  • Aleksandra Lont,
  • Sławomir Topór,
  • Marcin Żuk,
  • Agnieszka Rzeźnikiewicz

DOI
https://doi.org/10.3390/ma17133101
Journal volume & issue
Vol. 17, no. 13
p. 3101

Abstract

Read online

The article presents research results on the possibility of shaping the structure and properties of Co-Cr-W-C-Ti alloys (type Stellite 6) using laser cladding technology. Cobalt-based alloys are used in several industries because they are characterized by high erosion, abrasion, and corrosion resistance, retaining these properties at high temperatures. To further increase erosion resistance, it seems appropriate to reinforce material by in situ synthesis of hard phases. Among the transition metal carbides (TMCs), titanium carbide is one of the hardest and can have a positive effect on the extension of the lifetime of components made from cobalt-based alloys. In this article, concentration of C, W, and Ti due to the possibility of in situ synthesis of titanium carbides was subjected to detailed analysis. The provided research includes macrostructure and microstructure analysis, X-ray diffraction (XRD), microhardness, and penetrant tests. It was found that the optimal concentrations of Ti and C in the Co-Cr-W-C alloy allow the formation of titanium carbides, which significantly improves erosion resistance for low impact angles. Depending on the concentrations of titanium, carbon, and tungsten in the molten metal pool, it is possible to shape the alloy structure by influencing to morphology and size of the reinforcing phase in the form of the complex carbide (Ti,W)C.

Keywords