Royal Society Open Science (Jul 2021)

Characterizing the supercomplex association of photosynthetic complexes in cyanobacteria

  • Zimeng Zhang,
  • Long-Sheng Zhao,
  • Lu-Ning Liu

DOI
https://doi.org/10.1098/rsos.202142
Journal volume & issue
Vol. 8, no. 7

Abstract

Read online

The light reactions of photosynthesis occur in thylakoid membranes that are densely packed with a series of photosynthetic complexes. The lateral organization and close association of photosynthetic complexes in native thylakoid membranes are vital for efficient light harvesting and energy transduction. Recently, analysis of the interconnections between photosynthetic complexes to form supercomplexes has garnered great interest. In this work, we report a method integrating immunoprecipitation, mass spectrometry and atomic force microscopy to identify the inter-complex associations of photosynthetic complexes in thylakoid membranes from the cyanobacterium Synechococcus elongatus PCC 7942. We characterize the preferable associations between individual photosynthetic complexes and binding proteins involved in the complex–complex interfaces, permitting us to propose the structural models of photosynthetic complex associations that promote the formation of photosynthetic supercomplexes. We also identified other potential binding proteins with the photosynthetic complexes, suggesting the highly connecting networks associated with thylakoid membranes. This study provides mechanistic insight into the physical interconnections of photosynthetic complexes and potential partners, which are crucial for efficient energy transfer and physiological acclimatization of the photosynthetic apparatus. Advanced knowledge of the protein organization and interplay of the photosynthetic machinery will inform rational design and engineering of artificial photosynthetic systems to supercharge energy production.

Keywords