Canadian Journal of Infectious Diseases and Medical Microbiology (Jan 2021)

Evaluation of Intraventricular/Intrathecal Antimicrobial Therapy in the Treatment of Nosocomial Meningitis Caused by Multidrug-Resistant Gram-Negative Bacteria after Central Nervous System Surgery

  • Nagehan Didem Sari,
  • Sevim Baltali,
  • Istemi Serin,
  • Veysel Antar

DOI
https://doi.org/10.1155/2021/9923015
Journal volume & issue
Vol. 2021

Abstract

Read online

Introduction. Postoperative meningitis (POM) is an infection with high mortality and morbidity following central nervous system surgery due to trauma or tumor. Intrathecal/intraventricular (IT/IVT) antibiotic administrations have been considered as the last treatment options for multidrug-resistance (MDR) Gram-negative bacteria that do not respond to intravenous (IV) regimens. IT/IVT can bypass the blood-brain barrier, obtain a more effective antibiotic concentration in CSF, and reduce systemic side effects. We aimed to determine the characteristics of postoperative patients who were diagnosed with MDR POM during follow-up in our intensive care unit (ICU). Material and Methods. In this study, POM patients who were followed up in ICU after the central nervous system intervention between January 2016 and December 2019 and whose MDR Gram-negative bacteria were isolated from CSF were evaluated. As soon as the patients were diagnosed with POM, a catheter was inserted and treatment was started. Results. Microbiological eradication was achieved in 3 ± 0.8 days with 30 mg/day amikacin treatment in POM due to K. pneumoniae and 3.7 ± 1.95 days with colistin sodium 10 mg/day treatment in POM due to A. baumannii via IT/IVT catheter. IT/IVT treatment was utilized for a median of 10 days and continued until the defined cure criteria were achieved. While cure was achieved in 6 of 14 POM cases, 8 of them were exitus. Discussion and Conclusion. To avoid the severe consequences of postoperative meningitis, acting fast and adding IT/IVT methods to parenteral administration routes by considering the distribution of MDR microorganisms within the hospital while planning effective treatment will increase the clinical success.