Micromachines (Apr 2022)
Electrocapillary Actuation of Liquid Metal in Microchannels
Abstract
Controllable deformation of liquid metal by electrocapillary actuation (ECA) is empirically characterized in fluidic channels at the sub-millimeter-length scale. In 100-µm-deep channels of varying widths, the Galinstan liquid metal could move at velocities of more than 40 mm/s. The liquid metal could extend more than 2.5 mm into the channels at an electrocapillary actuation voltage of 3 V DC. The dynamic behavior of the liquid metal as it moves in the microchannels is described. These results are useful for designing microsystems that use liquid metal as a functional material.
Keywords