Polymers (Jun 2020)

A Preliminary Evaluation of the Pro-Chondrogenic Potential of 3D-Bioprinted Poly(ester Urea) Scaffolds

  • Samuel R. Moxon,
  • Miguel J.S. Ferreira,
  • Patricia dos Santos,
  • Bogdan Popa,
  • Antonio Gloria,
  • Ramaz Katsarava,
  • David Tugushi,
  • Armenio C. Serra,
  • Nigel M. Hooper,
  • Susan J. Kimber,
  • Ana C. Fonseca,
  • Marco A. N. Domingos

DOI
https://doi.org/10.3390/polym12071478
Journal volume & issue
Vol. 12, no. 7
p. 1478

Abstract

Read online

Degeneration of articular cartilage (AC) is a common healthcare issue that can result in significantly impaired function and mobility for affected patients. The avascular nature of the tissue strongly burdens its regenerative capacity contributing to the development of more serious conditions such as osteoarthritis. Recent advances in bioprinting have prompted the development of alternative tissue engineering therapies for the generation of AC. Particular interest has been dedicated to scaffold-based strategies where 3D substrates are used to guide cellular function and tissue ingrowth. Despite its extensive use in bioprinting, the application of polycaprolactone (PCL) in AC is, however, restricted by properties that inhibit pro-chondrogenic cell phenotypes. This study proposes the use of a new bioprintable poly(ester urea) (PEU) material as an alternative to PCL for the generation of an in vitro model of early chondrogenesis. The polymer was successfully printed into 3D constructs displaying adequate substrate stiffness and increased hydrophilicity compared to PCL. Human chondrocytes cultured on the scaffolds exhibited higher cell viability and improved chondrogenic phenotype with upregulation of genes associated with type II collagen and aggrecan synthesis. Bioprinted PEU scaffolds could, therefore, provide a potential platform for the fabrication of bespoke, pro-chondrogenic tissue engineering constructs.

Keywords