Energies (Jul 2023)

Preparation and Characterization of Lauric Acid/Modified Fly Ash/Graphene Composite as Low-Cost and Eco-Friendly Phase Change Materials for Thermal Energy Storage

  • Peng Liu,
  • Xinglan Cui,
  • Yajing Wang,
  • Zhikai Zhang,
  • Jun Rao,
  • Shuai Jiang,
  • Xiaobin Gu

DOI
https://doi.org/10.3390/en16155666
Journal volume & issue
Vol. 16, no. 15
p. 5666

Abstract

Read online

Fly ash is a kind of industrial solid waste that is considered “hazardous waste”. In this study, a supporting matrix of modified fly ash (MFA) was employed to package lauric acid (LA) via a facile direct impregnation method involving less experimental error. A low-cost and eco-friendly form-stable phase change material (PCM) of LA/MFA/graphene (G) was fabricated, with G as the thermal conductivity enhancer. The preparation and leakage testing of an LA/MFA/G form-stable PCM (FSPCM) were investigated in detail. The leakage test results indicated that good package efficiency was obtained using MFA with a higher specific surface area and richer pore structure to pack the LA. Then, LA/MFA/G composites were characterized via scanning electronic microscope (SEM), Fourier transform infrared spectroscope (FTIR), differential scanning calorimeter (DSC), and thermal gravimetric analyzer (TGA). The results showed that excellent form stability was obtained by adding MFA as the supporting matrix. The SEM analysis indicated that LA could be well dispersed into the structure of MFA. The FTIR analysis demonstrated that the components of the FSPCM were quite compatible. The results of the DSC illustrated that LA/MFA/G (5 wt. %) had a melting point of 45.38 °C and a latent heat of 41.08 J/g. The TGA analysis revealed that the prepared FSPCM had better thermal stability compared with LA within its working temperature range. In addition, the effects of G on the heat transfer performance of the prepared FSPCM were examined. In short, using MFA with a higher specific surface area and richer pore structure to pack the LA via a simple preparation process with less experimental error can contribute to good performance. The research not only improved the comprehensive utilization of solid waste, but also promotes the application of FSPCM in the field of building energy conservation.

Keywords