Remote Sensing (Mar 2023)

A Traffic-Aware Fair MAC Protocol for Layered Data Collection Oriented Underwater Acoustic Sensor Networks

  • Sidan Yang,
  • Xuan Liu,
  • Yishan Su

DOI
https://doi.org/10.3390/rs15061501
Journal volume & issue
Vol. 15, no. 6
p. 1501

Abstract

Read online

Underwater acoustic channels are characterized by long propagation delay, limited available bandwidth and high energy costs. These unique characteristics bring challenges to design media access control (MAC) protocol for underwater acoustic sensor networks (UASNs). Especially in data-collection-oriented UASNs, data generated at underwater nodes are transmitted hop-by-hop to the sink node. The traffic loads undertaken by nodes of different depths are different. However, most existing MAC protocols do not consider the traffic load imbalance in data-collection-oriented UASNs, resulting in unfairness in how the nodes transmit their own generated data. In this paper, we propose a novel traffic-aware fair MAC protocol for layered data-collection-oriented UASNs, called TF-MAC. TF-MAC accesses a medium by assigning time slots of different lengths to each layer via different traffic loads to achieve traffic fairness of nodes. To improve throughput and avoid collision in the network, an overlapping time slot division mechanism for different layers and multi-channel allocation scheme within each single layer is employed. Considering the time-varying traffic loads of the nodes, an adaptive packet length algorithm is proposed by taking advantage of the spatial-temporal uncertainty of underwater channels. A sea experiment was conducted to prove the spatial-temporal uncertainty of UASNs, which provides a feasibility basis for the proposed algorithm. Simulation results show that TF-MAC can greatly improve the network performance in terms of throughput, delay, energy consumption, and fairness in the layered data-collection-oriented UASNs.

Keywords