BioMedical Engineering OnLine (Feb 2024)

The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer

  • Arnab Barua,
  • Xianta Jiang,
  • Daniel Fuller

DOI
https://doi.org/10.1186/s12938-024-01213-3
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 30

Abstract

Read online

Abstract Background Human activity Recognition (HAR) using smartphone sensors suffers from two major problems: sensor orientation and placement. Sensor orientation and sensor placement problems refer to the variation in sensor signal for a particular activity due to sensors’ altering orientation and placement. Extracting orientation and position invariant features from raw sensor signals is a simple solution for tackling these problems. Using few heuristic features rather than numerous time-domain and frequency-domain features offers more simplicity in this approach. The heuristic features are features which have very minimal effects of sensor orientation and placement. In this study, we evaluated the effectiveness of four simple heuristic features in solving the sensor orientation and placement problems using a 1D-CNN–LSTM model for a data set consisting of over 12 million samples. Methods We accumulated data from 42 participants for six common daily activities: Lying, Sitting, Walking, and Running at 3-Metabolic Equivalent of Tasks (METs), 5-METs and 7-METs from a single accelerometer sensor of a smartphone. We conducted our study for three smartphone positions: Pocket, Backpack and Hand. We extracted simple heuristic features from the accelerometer data and used them to train and test a 1D-CNN–LSTM model to evaluate their effectiveness in solving sensor orientation and placement problems. Results We performed intra-position and inter-position evaluations. In intra-position evaluation, we trained and tested the model using data from the same smartphone position, whereas, in inter-position evaluation, the training and test data was from different smartphone positions. For intra-position evaluation, we acquired 70–73% accuracy; for inter-position cases, the accuracies ranged between 59 and 69%. Moreover, we performed participant-specific and activity-specific analyses. Conclusions We found that the simple heuristic features are considerably effective in solving orientation problems. With further development, such as fusing the heuristic features with other methods that eliminate placement issues, we can also achieve a better result than the outcome we achieved using the heuristic features for the sensor placement problem. In addition, we found the heuristic features to be more effective in recognizing high-intensity activities.

Keywords