Viruses (Apr 2021)

The Translated Amino Acid Sequence of an Insertion in the Hepatitis E Virus Strain 47832c Genome, But Not the RNA Sequence, Is Essential for Efficient Cell Culture Replication

  • Johannes Scholz,
  • Alexander Falkenhagen,
  • Reimar Johne

DOI
https://doi.org/10.3390/v13050762
Journal volume & issue
Vol. 13, no. 5
p. 762

Abstract

Read online

The hepatitis E virus (HEV) can cause hepatitis E in humans. Recently, the occurrence of HEV strains carrying insertions in their hypervariable genome region has been described in chronically infected patients. The insertions originate from human genes or from the HEV genome itself. Although their distinct functions are largely unknown, an involvement in efficient cell culture replication was shown for some strains. The HEV strain 47832c, originally isolated from a chronically infected transplant patient, carries a bipartite insertion composed of HEV genome duplications. Here, several mutants with deletions and substitutions of the insertion were generated and tested in cell culture. Complete deletion of the insertion abolished virus replication and even a single glycine to arginine substitution led to reduced cell culture growth. A mutant encoding a frameshift of the inserted sequence was not infectious, whereas a mutant carrying synonymous codons in this region replicated similar like the wild type. Substitution of the insertion with the S17 insertion from HEV strain Kernow C1-p6 did not result in viable virus, which might indicate strain- or cell type-specificity of the insertions. Generally, the translated amino acid sequence of the insertion, but not the RNA sequence, seems to be responsible for the observed effect.

Keywords