Journal of Science: Advanced Materials and Devices (Sep 2016)
Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance
Abstract
Epoxy resin modified with nano scale fillers offers excellent combination of properties such as enhanced dimensional stability, mechanical and electrical properties, which make them ideally suitable for a wide range of applications. However, the studies about functionalized nano-hybrid for coating applications still require better insight. In the present work we have developed silane treated nanoparticles and to reinforce it with diglycidyl epoxy resin to fabricate surface functionalized nano-hybrid epoxy coatings. The effect of inorganic nano particles on the corrosion and fouling resistance properties was studied by various (1, 3, 5 and 7 wt%) filler loading concentrations. Diglycidyl epoxy resin (DGEBA) commonly was used for coating. 3-Aminopropyltriethoxysilane (APTES) was used as a coupling agent to surface treats the TiO2 nanoparticles. The corrosion and fouling resistant properties of these coatings were evaluated by electrochemical impedance and static immersion tests, respectively. Nano-hybrid coating (3 wt% of APTES–TiO2) showed corrosion resistance up to 108 Ω cm2 after 30 days immersion in 3.5% NaCl solution indicating an excellent corrosion resistance. Static immersion test was carried out in Bay of Bengal (Muttukadu) which has reflected good antifouling efficiency of the 3 wt% APTES–TiO2 loaded nano-hybrid coating up to 6 months.
Keywords