Receptors (Feb 2025)

RNase P-Associated External Guide Sequences Inhibit HIV-1 Infection by Shutting Down Human CCR5 Expression

  • Yujun Liu,
  • Bin Yan,
  • Isadora Zhang,
  • Fenyong Liu

DOI
https://doi.org/10.3390/receptors4010003
Journal volume & issue
Vol. 4, no. 1
p. 3

Abstract

Read online

Background: External guide sequences (EGSs) are small RNA molecules capable of hybridizing to a target mRNA and rendering the target RNA susceptible to degradation by ribonuclease P (RNase P), a tRNA processing enzyme. Methods: In this study, natural tRNA-originated and engineered variant EGSs were constructed to target the mRNA encoding human CC-chemokine receptor 5 (CCR5), an HIV co-receptor. Results: The EGS variant was about 100-fold more efficient in inducing RNase P-mediated cleavage of the CCR5 mRNA sequence in vitro than a natural tRNA-derived EGS. Furthermore, the expressed variant and natural tRNA-originated EGSs decreased CCR5 expression by 98% and 73–77% and reduced infection by the CCR5-tropic HIVBa-L strain in cells by more than 900- and 50-fold, respectively. By contrast, cells expressing these EGSs exhibited no change in the expression of CXCR4, another HIV co-receptor, and showed no reduction in infection by the CXCR4-tropic HIVIIIB strain, which uses CXCR4 instead of CCR5 as the co-receptor. Thus, the EGSs specifically targeted CCR5 but not CXCR4. Conclusions: Our results demonstrate that EGSs are effective and specific in diminishing HIV infection and represent a novel class of gene-targeting agents for anti-HIV therapy.

Keywords