Poultry Science (Aug 2024)

Berberine alleviates high-energy and low-protein diet-induced fatty liver hemorrhagic syndrome in laying hens: insights from microbiome and metabolomics

  • Xinyi Cheng,
  • Yang Hu,
  • Jun Kuang,
  • Xiaoquan Guo,
  • Huabin Cao,
  • Huansheng Wu,
  • Guoliang Hu,
  • Yu Zhuang

Journal volume & issue
Vol. 103, no. 8
p. 103968

Abstract

Read online

ABSTRACT: Berberine (BBR), a well-known quaternary ammonium alkaloid, is recognized for its ability to prevent and alleviate metabolic disorders because of its anti-oxidative and anti-inflammatory properties. However, the underlying mechanisms of BBR to mitigate fatty liver hemorrhagic syndrome (FLHS) through the modulation of gut microbiota and their metabolism remained unclear. The results revealed that BBR ameliorates lipid metabolism disorder in high-energy and low-protein (HELP) diet-induced FLHS laying hens, as evidenced by improved liver function and lipid deposition of the liver, reduced blood lipids, and the expression of liver lipid synthesis-related factors. Moreover, BBR alleviated HELP diet-induced barrier dysfunction, increased microbial population, and dysregulated lipid metabolism in the ileum. BBR reshaped the HELP-perturbed gut microbiota, particularly declining the abundance of Desulfovibrio_piger and elevating the abundance of Bacteroides_salanitronis_DSM_18170. Meanwhile, metabolomic profiling analysis revealed that BBR reshaped microbial metabolism and function, particularly by reducing the levels of hydrocinnamic acid, dehydroanonaine, and leucinic acid. Furthermore, fecal microbiota transplantation (FMT) experiments revealed that BBR-enriched gut microbiota alleviated hepatic lipid deposition and intestinal inflammation compared with those chicks that received a gut microbiota by HELP. Collectively, our study provided evidence that BBR effectively alleviated FLHS induced by HELP by reshaping the microbial and metabolic homeostasis within the liver-gut axis.

Keywords