iScience (Jan 2025)
Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients
- Benoit Schmauch,
- Vincent Cabeli,
- Omar Darwiche Domingues,
- Jean-Eudes Le Douget,
- Alexandra Hardy,
- Reda Belbahri,
- Charles Maussion,
- Alberto Romagnoni,
- Markus Eckstein,
- Florian Fuchs,
- Aurélie Swalduz,
- Sylvie Lantuejoul,
- Hugo Crochet,
- François Ghiringhelli,
- Valentin Derangere,
- Caroline Truntzer,
- Harvey Pass,
- Andre L. Moreira,
- Luis Chiriboga,
- Yuanning Zheng,
- Michael Ozawa,
- Brooke E. Howitt,
- Olivier Gevaert,
- Nicolas Girard,
- Elton Rexhepaj,
- Iris Valtingojer,
- Laurent Debussche,
- Emanuele de Rinaldis,
- Frank Nestle,
- Emmanuel Spanakis,
- Valeria R. Fantin,
- Eric Y. Durand,
- Marion Classe,
- Katharina Von Loga,
- Elodie Pronier,
- Matteo Cesaroni
Affiliations
- Benoit Schmauch
- Owkin France, Paris, France; Corresponding author
- Vincent Cabeli
- Owkin France, Paris, France
- Omar Darwiche Domingues
- Owkin France, Paris, France
- Jean-Eudes Le Douget
- Owkin France, Paris, France
- Alexandra Hardy
- Owkin France, Paris, France; Corresponding author
- Reda Belbahri
- Owkin France, Paris, France
- Charles Maussion
- Owkin France, Paris, France
- Alberto Romagnoni
- Owkin France, Paris, France
- Markus Eckstein
- Bavarian Cancer Research Center (Bayerisches Zentrum für Krebsforschung, BZKF), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
- Florian Fuchs
- Bavarian Cancer Research Center (Bayerisches Zentrum für Krebsforschung, BZKF), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Aurélie Swalduz
- Claude Bernard University Lyon I & Léon Bérard Cancer Center, Lyon, France
- Sylvie Lantuejoul
- Grenoble Alpes University and Léon Bérard Cancer Center, Lyon, France
- Hugo Crochet
- Léon Bérard Cancer Center, Lyon, France
- François Ghiringhelli
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Valentin Derangere
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France; Genetic and Immunology Medical Institute, Dijon, France; University of Burgundy Franche-Comté, Dijon, France
- Caroline Truntzer
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France; Genetic and Immunology Medical Institute, Dijon, France; University of Burgundy Franche-Comté, Dijon, France
- Harvey Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY, USA
- Andre L. Moreira
- Department of Pathology, NYU Langone New York University Langone Medical Center, New York, NY, USA
- Luis Chiriboga
- Department of Pathology, NYU Langone New York University Langone Medical Center, New York, NY, USA
- Yuanning Zheng
- Department of Pathology, Stanford University, Stanford, CA, USA
- Michael Ozawa
- Department of Pathology, Stanford University, Stanford, CA, USA
- Brooke E. Howitt
- Department of Medicine & Biomedical Data Science, Stanford University, Stanford, CA, USA
- Olivier Gevaert
- Department of Medicine & Biomedical Data Science, Stanford University, Stanford, CA, USA
- Nicolas Girard
- Institut Curie, Paris, France
- Elton Rexhepaj
- Sanofi, Paris, France
- Iris Valtingojer
- Sanofi, Paris, France
- Laurent Debussche
- Sanofi, Paris, France
- Emanuele de Rinaldis
- Sanofi, Cambridge, MA, USA
- Frank Nestle
- Sanofi, Cambridge, MA, USA
- Emmanuel Spanakis
- Sanofi, Paris, France
- Valeria R. Fantin
- Sanofi, Cambridge, MA, USA
- Eric Y. Durand
- Owkin France, Paris, France
- Marion Classe
- Sanofi, Paris, France
- Katharina Von Loga
- Owkin France, Paris, France
- Elodie Pronier
- Owkin France, Paris, France
- Matteo Cesaroni
- Sanofi, Paris, France
- Journal volume & issue
-
Vol. 28,
no. 1
p. 111638
Abstract
Summary: Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of YAP1 and TEAD-family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications. Therefore, identifying patients with a dysregulated Hippo pathway is key to enhancing treatment impact. Although recent studies have derived RNA-seq-based signatures, there remains a need for a reproducible and cost-effective method to measure the pathway activation. In recent years, deep learning applied to histology slides have emerged as an effective way to predict molecular information from a data modality available in clinical routine. Here, we trained models to predict YAP1/TEAD activity from H&E-stained histology slides in multiple cancers. The robustness of our approach was assessed in seven independent validation cohorts. Finally, we showed that histological markers of disease aggressiveness were associated with dysfunctional Hippo signaling.