International Journal of Molecular Sciences (Dec 2018)

α-Chymotrypsin Immobilized on a Low-Density Polyethylene Surface Successfully Weakens <i>Escherichia coli</i> Biofilm Formation

  • Cristina Cattò,
  • Francesco Secundo,
  • Garth James,
  • Federica Villa,
  • Francesca Cappitelli

DOI
https://doi.org/10.3390/ijms19124003
Journal volume & issue
Vol. 19, no. 12
p. 4003

Abstract

Read online

The protease α-chymotrypsin (α-CT) was covalently immobilized on a low-density polyethylene (LDPE) surface, providing a new non-leaching material (LDPE-α-CT) able to preserve surfaces from biofilm growth over a long working timescale. The immobilized enzyme showed a transesterification activity of 1.24 nmol/h, confirming that the immobilization protocol did not negatively affect α-CT activity. Plate count viability assays, as well as confocal laser scanner microscopy (CLSM) analysis, showed that LDPE-α-CT significantly impacts Escherichia coli biofilm formation by (i) reducing the number of adhered cells (−70.7 ± 5.0%); (ii) significantly affecting biofilm thickness (−81.8 ± 16.7%), roughness (−13.8 ± 2.8%), substratum coverage (−63.1 ± 1.8%), and surface to bio-volume ratio (+7.1 ± 0.2-fold); and (iii) decreasing the matrix polysaccharide bio-volume (80.2 ± 23.2%). Additionally, CLSM images showed a destabilized biofilm with many cells dispersing from it. Notably, biofilm stained for live and dead cells confirmed that the reduction in the biomass was achieved by a mechanism that did not affect bacterial viability, reducing the chances for the evolution of resistant strains.

Keywords