Scientific Reports (Jul 2018)

Extremely high strength and work hardening ability in a metastable high entropy alloy

  • S. S. Nene,
  • M. Frank,
  • K. Liu,
  • R. S. Mishra,
  • B. A. McWilliams,
  • K. C. Cho

DOI
https://doi.org/10.1038/s41598-018-28383-0
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Design of multi-phase high entropy alloys uses metastability of phases to tune the strain accommodation by favoring transformation and/or twinning during deformation. Inspired by this, here we present Si containing dual phase Fe42Mn28Co10Cr15Si5 high entropy alloy (DP-5Si-HEA) exhibiting very high strength (1.15 GPa) and work hardening (WH) ability. The addition of Si in DP-5Si-HEA decreased the stability of f.c.c. (γ) matrix thereby promoting pronounced transformation induced plastic deformation in both as-cast and grain refined DP-5Si-HEAs. Higher yet sustained WH ability in fine grained DP-5Si-HEA is associated with the uniform strain partitioning among the metastable γ phase and resultant h.c.p. (ε) phase thereby resulting in total elongation of 12%. Hence, design of dual phase HEAs for improved strength and work hardenability can be attained by tuning the metastability of γ matrix through proper choice of alloy chemistry from the abundant compositional space of HEAs.