Parasites & Vectors (Feb 2020)

Synergistic effect of Lysinibacillus sphaericus and glyphosate on temephos-resistant larvae of Aedes aegypti

  • Laura Bernal,
  • Jenny Dussán

DOI
https://doi.org/10.1186/s13071-020-3928-3
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 6

Abstract

Read online

Abstract Background Glyphosate-based herbicides are one of the most commonly used compounds to control perennial weeds around the world. This compound is very persistent in the environment and tends to filter into aquatic ecosystems, affecting non-target species such as mosquito larvae. Aedes aegypti mosquitoes are vectors of multiple arboviruses such as dengue and Zika. Glyphosate can be degraded into non-harmful environmental compounds by Lysinibacillus sphaericus, a spore forming bacterium which can also kill Ae. aegypti larvae. In this study, we assessed the effect of glyphosate concentrations, typically used in Colombia, on the entomopathogenic activity of L. sphaericus against Ae. aegypti larvae. Methods Bioassays and toxicity curves were performed to compare the larval mortality between different treatments with and without bacteria and glyphosate (Roundup 747®). Larvae were exposed to both bacteria and glyphosate by adding the compound on chloride-free water. Comparisons were made using both probit regression and ANOVA analysis. Results ANOVA showed a significant difference in larval mortality when adding glyphosate and L. sphaericus at the same time. Thus, a positive synergic effect on larval mortality was found when L. sphaericus and glyphosate were mixed. According to probit analysis, median lethal dose (LD50) for bacterial mixture was of 106.23 UFC/ml and for glyphosate was 2.34 g/l. Conclusions A positive synergic effect on the mortality of larval Ae. aegypti when exposed to L. sphaericus mixture and glyphosate was found. Molecular studies focusing on the toxin production of L. sphaericus are required to understand more about this synergistic effect.

Keywords