Lithosphere (Dec 2021)

Investigations on the Directional Propagation of Hydraulic Fracture in Hard Roof of Mine: Utilizing a Set of Fractures and the Stress Disturbance of Hydraulic Fracture

  • Yuekun Xing,
  • Bingxiang Huang,
  • Binghong Li,
  • Jiangfeng Liu,
  • Qingwang Cai,
  • Mingxiao Hou

DOI
https://doi.org/10.2113/2021/4328008
Journal volume & issue
Vol. 2021, no. Special 4

Abstract

Read online

AbstractDirectional fracturing is fundamental to weakening the hard roof in the mine. However, due to the significant stress disturbance in the mine, principal stresses present complicated and unmeasurable. Consequently, the designed hydraulic fracture (HF) extension path is always oblique to principal stresses. Then, the HF will present deflecting propagation, which will restrict the weakness of the hard roof. In this work, we proposed an approach to drive the HF to propagate directionally in the hard roof, utilizing a set of hydraulic fractures and their stress disturbance. In this approach, directional fracturing in the hard roof is conducted via the sequential fracturing of three linear distribution slots. The disturbed stresses produced by the first fracturing (in the middle) are utilized to restrict the HF deflecting extension of the subsequent fracturing. Then, the combined hydraulic fractures constitute a roughly directional fracturing trajectory in rock, i.e., the directional fracturing. To validate the directional fracturing approach, the cohesive crack (representing rock fracture process zone (FPZ)) model coupled with the extended finite element method (XFEM) was employed to simulate the 2D hydraulic fracturing process. The benchmark of the above fracturing simulation method was firstly conducted, which presents the high consistency between simulation results and the fracturing experiments. Then, the published geological data of the hard roof in Datong coal mine (in Shanxi, China) was employed in the fracturing simulation model, with various principal stress differences (2~6 MPa) and designed fracturing directions (30°~60°). The simulation results show that the disturbing stress of the first fracturing significantly inhibits the deflecting propagation of the subsequent fractures. More specifically, along the direction parallel to the initial minimum principal stress, the extension distance of the subsequent hydraulic fractures is 2~3 times higher than that of the deflecting HF in the first fracturing. The fracturing trajectory of the proposed direction fracturing method deviates from the designed fracturing path by only 2°~14°, reduced by 76%~93% compared with the traditional fracturing method utilizing a single hydraulic fracture. This newly proposed method can enhance the HF directional propagation ability more effectively and conveniently in the complex and unmeasurable stress field. Besides, this directional fracturing method can also provide references for the directional fracturing in the oil-gas and geothermal reservoir.