Molecules (Jan 2019)

Effects of Betaine on LPS-Stimulated Activation of Microglial M1/M2 Phenotypes by Suppressing TLR4/NF-κB Pathways in N9 Cells

  • Hui Shi,
  • Xiao-Long Wang,
  • Hong-Feng Quan,
  • Lin Yan,
  • Xiu-Ying Pei,
  • Rui Wang,
  • Xiao-Dong Peng

DOI
https://doi.org/10.3390/molecules24020367
Journal volume & issue
Vol. 24, no. 2
p. 367

Abstract

Read online

Microglia mediate multiple facets of neuroinflammation. They can be phenotypically divided into a classical phenotype (pro-inflammatory, M1) or an alternative phenotype (anti-inflammatory, M2) with different physiological characteristics and biological functions in the inflammatory process. Betaine has been shown to exert anti-inflammatory effects. In this study, we aimed to verify the anti-inflammatory effects of betaine and elucidate its possible molecular mechanisms of action in vitro. Lipopolysaccharide (LPS)-activated microglial cells were used as an inflammatory model to study the anti-inflammatory efficacy of betaine and explore its mechanism of regulating microglial polarisation by investigating the morphological changes and associated inflammatory changes. Cytokine and inflammatory mediator expression was also measured by ELISA, flow cytometry, immunofluorescence, and western blot analysis. Toll-like receptor (TLR)-myeloid differentiation factor 88 (Myd88)-nuclear factor-kappa B (NF-κB) p65, p-NF-κB p65, IκB, p-IκB, IκB kinase (IKK), and p-IKK expression was determined by western blot analysis. Betaine significantly mitigated the production of pro-inflammatory cytokines and increased the release of anti-inflammatory cytokines. It promoted the conversion of the microglia from M1 to M2 phenotype by decreasing the expression of inducible nitric oxide synthase and CD16/32 and by increasing that of CD206 and arginase-1. Betaine treatment inhibited the TLR4/NF-κB pathways by attenuating the expression of TLR4-Myd88 and blocking the phosphorylation of IκB and IKK. In conclusion, betaine could significantly alleviate LPS-induced inflammation by regulating the polarisation of microglial phenotype; thus, it might be an effective therapeutic agent for neurological disorders.

Keywords